
Research Article
Neural Networks Technique for Filling Gaps in Satellite
Measurements: Application to Ocean Color Observations

Vladimir Krasnopolsky, Sudhir Nadiga, Avichal Mehra, Eric Bayler, and David Behringer

NOAA Center for Weather and Climate Prediction, 5830 University Research Court, College Park, MD 20740, USA

Correspondence should be addressed to Vladimir Krasnopolsky; vladimir.krasnopolsky@noaa.gov

Received 6 August 2015; Revised 23 October 2015; Accepted 26 October 2015

Academic Editor: José Alfredo Hernandez
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A neural network (NN) technique to fill gaps in satellite data is introduced, linking satellite-derived fields of interest with other
satellites and in situ physical observations. Satellite-derived “ocean color” (OC) data are used in this study because OC variability
is primarily driven by biological processes related and correlated in complex, nonlinear relationships with the physical processes of
the upper ocean. Specifically, ocean color chlorophyll-a fields from NOAA’s operational Visible Imaging Infrared Radiometer Suite
(VIIRS) are used, as well as NOAA and NASA ocean surface and upper-ocean observations employed—signatures of upper-ocean
dynamics. An NN transfer function is trained, using global data for two years (2012 and 2013), and tested on independent data for
2014. To reduce the impact of noise in the data and to calculate a stable NN Jacobian for sensitivity studies, an ensemble of NNs with
different weights is constructed and compared with a single NN.The impact of the NN training period on the NN’s generalization
ability is evaluated. The NN technique provides an accurate and computationally cheap method for filling in gaps in satellite ocean
color observation fields and time series.

1. Introduction

The number of successful neural network (NN) applications
in satellite remote sensing, meteorology, and oceanography
has steadily increased over the last two decades [1, 2]. In
these fields, NNs have been applied to address such problems
as classification, feature extraction and tracking, pattern
recognition, change detection, forward and inverse problems,
and so forth. NNs also have been used to fill data gaps in
measurement time series [3–5], while Peres et al. [6] used
NNs to extend observation records.

NNs have also been applied in satellite remote sensing
of ocean color (OC) (see references below). The “color” of
the ocean is determined by the interactions of incident light
with substances or particles present in the water because
suspended particles will increase the scattering of light. In
coastal areas, material in river runoff, resuspension of bottom
material (sand, silt) by tides, waves, and storms, as well
as biologically active components in the water column can
change the color of near-shore waters. These components
contain substances that absorb certain wavelengths of light,

altering the optical signature. For example, microscopic
marine algae (phytoplankton) have the capacity to absorb
light in the blue and red regions of the spectrum due to the
chlorophyll which enables photosynthesis. The underlying
principle for remote sensing of ocean color (OC) is water
with higher concentrations of phytoplankton (chlorophyll)
is greener, while water with lower concentrations of phyto-
plankton is bluer [7]. Ocean color data is a vital resource for
operational forecasting, oceanographic research, and earth
sciences, along with a wide variety of related applications [8].

Satellite-derived OC fields are essential for numeri-
cal prediction applications, enabling numerical models to
address a biophysical feedback process that is particularly
important to coupled ocean-atmosphere modeling. As a new
capability, integrating/assimilating near-real-time OC data
into numerical ocean modeling improves forecast accuracy;
consequently, a robust method needs to be developed for
filling data gaps and providing the projected OC values
needed to run the model into the future for predictions. The
assimilation of OC data also drives/constrains the modeling
of physical-biogeochemical processes that are the foundation
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for ecological forecasting; however, such models require
continuous (gap-free) satellite ocean color fields for devel-
opment, initialization, and data assimilation [8]. Thus, this
work contributes a critical foundation for physical and bio-
geochemical modeling by providing continuous ocean color
data and projected values. For the past three years, NOAAhas
been the developing capability to use near-real-time Visible
Infrared Imaging Radiometer Suite (VIIRS) and other OC
fields for its operational ocean [9, 10] and coupled seasonal
forecast systems [11].

Multiple NN applications have been developed to solve
forward and inverse problems in satellite ocean color remote
sensing [12, and references there]. NNs also have been applied
to merging OC information from multiple satellite missions
[13]. In this work, we developed a new NN approach, which
allows gaps (spatial and temporal) in satellite derived OC
fields to be filled using physically related, but independently
derived, satellite and in situ observations which provide
physical information about the state of the upper layer of the
ocean.

2. Methodology

2.1. Formulation of the Problem. Chlorophyll-a (Chl-a) con-
centration, a biological proxy for the intensity of photosyn-
thesis derivable from ocean color observations, is affected
by processes in the upper layers of the ocean of various
spatial and temporal scales. Physical parameters charac-
terizing the state of the ocean surface and upper mixed
layer—temperature, salinity, and density—define the active
physical background for associated biological processes; thus,
variability of the physical background is responsible for a
significant portion of the variability of entrained biological
parameters. Accordingly, we can consider the OC, 𝑌 (in this
case, the single parameter Chl-a), as a function or mapping
of a vector of the ocean surface and upper mixed-layer state
variables,𝑋. This mapping can be symbolically written as

𝑌 = 𝑀(𝑋) ; 𝑋 ∈ R
𝑛

, 𝑌 ∈ R
𝑚

, (1)

where𝑀 denotes the mapping, 𝑛 is the dimensionality of the
input space, and𝑚 is the dimensionality of the output space.

This function/mapping is expected to be a complex
nonlinear function because the variability of the physical
parameters is transferred into the OC variability through
a complex hierarchy of physical, chemical, and biological
processes. Also, both the OC and ocean state data have finite
spatial and temporal resolutions (provided on a grid with
limited spatial resolution and averaged to daily temporal res-
olution); consequently, the physical and biological variability
on scales finer than these resolutions appear as stochastic
contributions to the OC, 𝑌. Thus, the mapping between
the OC, 𝑌, and physical ocean variables, 𝑋, is a complex,
nonlinear stochastic mapping,

𝑌 = 𝑀(𝑋, 𝜀) . (2)

The stochastic variable 𝜀 represents an uncertainty intro-
duced into the OC, 𝑌, due to unaccounted high-frequency
small scale (subgrid) variability of physical, chemical, and

biological processes. Also, all or a part of variables, constitut-
ing vectors 𝑌 and 𝑋, are observations, which have different
levels of noise. This noise also contributes into the stochastic
variable 𝜀. Assuming that stochastic part of the mapping is
additive, representation (2) can be simplified,

𝑌 = 𝑀(𝑋) + 𝜀. (3)

It is noteworthy that the uncertainty 𝜀 is an inherent infor-
mative part of the stochastic mapping, containing impor-
tant statistical information about the mapping. Actually, the
stochastic mapping is a family of mappings distributed with a
distribution function. The range and shape of the distribution
function are determined by the uncertainty vector 𝜀.

2.2. NN Emulation for the OC Mapping. Neural networks
are very generic, accurate, and convenient mathematical
models that emulate complicated nonlinear input/output
relationships through statistical learning algorithms [14].
NNs can be applied to any problem that can be formulated as
a mapping (input vector versus output vector dependence).
The multilayer perceptron (MLP) with one hidden layer is
a generic tool for approximating such mappings [2]. The
simplest MLP NN analytical approximations use a family of
functions like

𝑦
𝑞
= 𝑎
𝑞0

+

𝑘

∑

𝑗=1

𝑎
𝑞𝑗

⋅ tanh(𝑏
𝑗0

+

𝑛

∑

𝑖=1

𝑏
𝑗𝑖
⋅ 𝑥
𝑖
) ;

𝑞 = 1, 2, . . . , 𝑚,

(4)

where 𝑥
𝑖
and 𝑦

𝑞
are components of the input and output

vectors 𝑋 and 𝑌, respectively, and 𝑎 and 𝑏 are NN weights.
Here, the hyperbolic tangent is used as an activation function.
Equation (4) is also a mapping, which can approximate any
continuous or almost continuous (with final discontinuities)
mapping [2, 15]. Symbolically, it can be represented as 𝑌 =

NN(𝑋).
To train the NN that is emulating the mapping (1), an

error function, 𝐸, is created,

𝐸 =
1

𝑁

𝑁

∑

𝑖=1

[𝑌
𝑖
−NN (𝑋

𝑖
)]
2

, (5)

and minimized to find an optimal set of coefficients 𝑎
𝑖𝑗

and 𝑏
𝑖𝑗
. However, for stochastic mapping (3), the training

criterion should be modified as

𝐸 =
1

𝑁

𝑁

∑

𝑖=1

[𝑌
𝑖
−NN (𝑋

𝑖
)]
2

≤ 𝜀
2

. (6)

A singleNNdoes not provide an adequate emulation/approx-
imation of the stochastic mapping (3); therefore, an ensemble
of NNs should be trained using criterion (6) [2]. If each NN
member of the ensemble satisfies condition (6), this ensemble
provides an adequate approximation for the stochastic map-
ping (3). Thus, to effectively account for subgrid scale effects
and to reduce the impact of noise in NN simulated data (e.g.,
the Chl-a concentration), an ensemble of NNs was trained
using criterion (6) and the average of this ensemble was used
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as the simulated OC, 𝑌. In producing the ensemble of NNs
to start the NN training, a slightly different initialization of
NN weights, 𝑎

𝑖𝑗
and 𝑏
𝑖𝑗
, was chosen for each NN ensemble

member; thus, different NN ensemble members correspond
to different local minima of the error function (5), all
satisfying condition (6). This simplest approach was selected
because the data have a significant level of uncertainty/noise.
The magnitude of the uncertainty estimated in Section 4.1.2
(Table 2) shows that the basic ensemble approach allows us to
obtain an approximation error ofmagnitude close to themag-
nitude of uncertainty in the data. In our opinion, this result
shows that, consistent with the parsimony principle, the use
of more sophisticated approaches is not justified in this case.

The ensemble was also used to improve the stability of the
NN Jacobian [16], which is used below for a sensitivity study.
The Jacobians of each 𝑘thNNensemblemember (𝑚×𝑛matrix
of the first derivatives of the NN outputs over the input),

𝐽
𝑘
= [

𝜕𝑦
𝑞

𝜕𝑥
𝑖

]

𝑞=1,...,𝑚

𝑖=1,...,𝑛

, (7)

were calculated and then averaged to calculate themean Jaco-
bian used for the sensitivity study below. Formally speaking,
the Jacobian of theMLPNN (4) can be easily calculated using
direct differentiation,

𝜕𝑦
𝑝

𝜕𝑥
𝑠
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𝑘
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However, calculating the derivative of any statistical model
(including NN) is an ill-posed problem [2] which should be
regularized. As shown by Krasnopolsky [16], the problem can
be solved using an NN ensemble and calculating the Jacobian
as an average of Jacobians of the NN ensemblemembers.This
approach is used in this effort.

2.3. SelectingNN Inputs andOutputs. Selecting the emulating
NN architecture includes selecting 𝑛 NN inputs, 𝑚 NN
outputs, and the number of hidden neurons, 𝑘. For this
study, we selected one output—chlorophyll-a concentration.
The vector of inputs, 𝑋, was composed of two parts 𝑋 =

{�⃗�, �⃗�}, where �⃗� is a vector of physical parameters, which
includes satellite sea-surface elevation (SSH), sea-surface
salinity (SSS), and sea-surface temperature (SST) and in situ
Argo salinity (sal) and temperature (temp) vertical profiles. It
can be expressed as

�⃗� = {SSH, SSS, SST, sal, temp} , (10)

and vector �⃗� is a vector of auxiliary or meta variables or
tracers configured as
�⃗�

= {yr, sin (𝜏) , cos (𝜏) , sin (lon) , cos (lon) , sin (lat)} ,
(11)

where yr is the year, 𝜏 = 2𝜋(𝑡/365) (𝑡 equals the day of the
year), and lon and lat are, respectively, longitude and latitude
in radians.

Metadata are included in the input vector, 𝑋, to permit
training a single NN (or single ensemble of NNs) that, given
the input 𝑋 for a particular location on the globe (lat and
lon) at a particular moment in time (yr and 𝜏), provides
output (Chl-a concentration) for the same location and time.
This NN is trained using records {𝑋, 𝑌} collected over several
years at locations representing the entire globe. The trained
NN (or NN ensemble), using the same weights, then is used
for the entire globe for a long period subsequent to the
training interval. Hence, each trainedNN (a singleNNorNN
ensemble member) takes information from one grid point
and produces a simulated value of OC (Chl-a) for that grid
point at the corresponding time. The same single NN or NN
ensemble then moves to the next grid point of the global
grid, producing, in this way, a global field of OC (Chl-a). The
results presented below are obtained with the input vector𝑋,
comprising �⃗� (11), including all metadata variables, and �⃗� (10),
including three surface variables plus variables representing
seven upper layers of sal and temp from Argo profiles. Thus,
in this study, the NNs emulating the OC mapping each have
23 inputs and 1 output. Table 1 lists these variables and their
units, as well as the output parameter.

In the following assessment, an optimal set of inputs will
be determined, specifically which parameters to include in
(11) and the number of upper layers established from Argo
profiles to include in (10). The accuracy of approximation
and the correlation coefficient between NN-generated values
and observedOC (Chl-a concentration) will be used asmajor
indicators of the significance of the various inputs.

3. Data

3.1. Raw Data. The OC (chlorophyll-a concentration) data
used in this study are from the Joint Polar Satellite System
(JPSS) Visible Infrared Imaging Radiometer Suite (VIIRS).
The VIIRS chlorophyll-a global fields are composited daily
and interpolated from the 9 km resolution provided byNASA
[17] to a global 1∘ × 1

∘ latitude/longitude resolution.
Temperature and salinity profiles for the top 75m of

ocean water from Argo float data, a collaborative inter-
national partnership program for measuring upper ocean
temperature, salinity, and currents in the Earth’s oceans, were
obtained from the International Pacific Research Center at
Hawaii as gridded global Argo monthly mean data interpo-
lated to daily values (1∘×1∘ latitude/longitude resolution) [18].
Daily global satellite SSH values [19] and daily global satellite
SST, interpolated to 1

∘

× 1
∘ latitude/longitude grids, were

acquired from NOAA [20]. NASA’s Physical Oceanography
Distributed Active Archive Center (PODAAC) provided SSS
(bias adjusted, version 3, gridded) data from the Aquarius
mission [21, 22]. Since the SSS fields do not have global
coverage daily, the fields were composited to obtain daily
coverage on a 1 by 1-degree global grid.

The aforementioned satellite and in situ observations are
well documented and available in near-real time; however, the
Aquarius mission recently ended (June 2015) due to equip-
ment failure. These satellite and in situ data are interpolated
to the same global one-degree latitude-longitude grid and
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Table 1: Inputs and outputs of emulating NNs.

Input # Variable Units Input Size
1 Year yr 1
2 Day of the year sin ((2 ⋅ day ⋅ 𝜋) /366) 1
3 cos ((2 ⋅ day ⋅ 𝜋) /366) 1
4 Longitude sin (lon) 1
5 cos (lon) 1
6 Latitude sin (lat) 1
7 Sea surface height m SSH 1
8 Sea surface salinity g/kg SSS 1
9 Sea surface temperature ∘C SST 1
10–16 Argo salinity profile g/kg sal 7
17–23 Argo temperature profile ∘C temp 7
Output # Variable Units Output Size
1 Chlorophyll-a concentration mg/m3 Chl-a 1

are available at daily temporal resolution for the period 2012
through 2014.

3.2. Data for NN Training and Validation. The first two years
(2012 and 2013 or 730 days) of daily data (∼20,000,000 grid
points or records) were selected for NN training and test.The
data were split into training and test sets (∼10,000,000 grid
points or records each). Every second data record or grid
point was selected for training, with the remaining records
reserved for testing. Each record within the training and
test sets consists of two vectors, input vector 𝑋 (10, 11) and
output vector𝑌 (which actually is a scalar value in this study)
at a particular grid location at a particular time (day). The
data for 2014 (365 days) were reserved for set for validating
trained NNs and estimating predictive (generalization) skill.
For better understanding of the generalization skill of the
OCNN approximation, the data was additionally partitioned
with the 2012 data alone selected for training and test sets
(∼5,000,000 records each), using the 2013 and 2014 data for
validation.

4. Results

4.1. The Accuracy of Approximation. This study determines
the “optimal” architecture for the emulating NN using an
early stopping method, evaluating the level of uncertainty
in the data, and comparing performances of single NN and
the NN ensemble. For this assessment, 2012 and 2013 data
are used for training and test set, with 2014 data used for
validation.

4.1.1. Selecting theNumber ofHiddenNeurons. To evaluate the
“optimal” size of the hidden layer (the number, 𝑘, of hidden
neurons in (4)) supporting the previous selection of NN
inputs and outputs, a set of ten NNs with 23 inputs and one
output were trained, varying 𝑘 from 3 to 45. Figure 1 depicts
the corresponding RMSE calculated for the independent test
set.

From Figure 1, 𝑘 = 30 is the “optimal” number of hidden
neurons, because it provides the “best” approximation with
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Figure 1: Chlorophyll-a neural network (NN) root-mean-square
error (RMSE, mg/m3) as a function of the number of hidden
neurons, 𝑘 in (4), for an independent test set.

the given training and test sets. At 𝑘 > 30, the NN starts
fitting the noise in the data; thus, in this case, the RMSE
also provides an estimate for the uncertainty, 𝜀, of order
0.2mg/m3. Based on these considerations, 𝑘 = 30 was
selected for all NNs used to generate OC values in this study.
Thus, almost all (except several special cases described in
Section 4.1.2) single NNs andNN ensemble members trained
and used in this study have the same architecture: 23 inputs,
30 hidden neurons, and 1 output.

4.1.2. Estimating the Value of the Uncertainty. The above
estimate of uncertainty, 𝜀 < 0.2mg/m3, may be improved.
The NN RMSE has several components and can be written as

RMSE = 𝜀app + 𝜀, (12)

where 𝜀app is the approximation accuracy of theNN per se and
𝜀 is the uncertainty due to unaccounted fine scale processes,
subgrid variability, and observation errors (Section 3.1). To
better estimate the approximation accuracy of the NN simu-
latingOC,we trained anNNwith the same number of hidden
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Table 2: Accuracy of approximation on independent test set.

Type of NN
(inputs : neurons : outputs) Bias RMSE CC

1 1 : 30 : 1, (𝜀app) 4.e − 5 2.e − 3 1.00
2 23 : 30 : 1 −4.e − 2 1.76e − 1 0.67
3 Ensemble 6 NNs (23 : 30 : 1) −2.e − 2 1.72e − 1 0.67
4 24 : 30 : 1 −4.e − 2 1.73e − 1 0.68
5 23 : 30 : 1 (Chl-a ≤ 1) −2.e − 2 1.11e − 1 0.72

6 Ensemble (23 : 30 : 1) (Chl-a
≤ 1) −2.e − 2 9.1e − 2 0.79

7 24 : 30 : 1 (Chl-a ≤ 1) −3.e − 2 1.02e − 1 0.77

neurons, 𝑘 = 30, and one output, Chl-a concentration;
however, this NN had only one input, the same Chl-a con-
centration. In other words, we trained an NN that emulated
the identity mapping. Table 2 row 1 shows the approximation
statistics for this NN, noting an approximation error of order
0.002mg/m3, which is a very small portion of the RMSE (12)
when adding Chl-a, as an additional input to the previously
selected 23 inputs (Table 2, row 4), and comparing Table 2
rows 2 and 4, the RMSE and correlation coefficient between
NN output and observed data do not significantly change.
Thus, practically the entire RMSE, approximately 0.18mg/m3
(Table 2 row 2), can be attributed to uncertainty due to
subgrid processes and observation noise in the 23 inputs.
Employing an NN ensemble does not materially change the
estimate (Table 2 row 3).

It is clear from physical considerations that the level of
observation noise (errors) and subgrid uncertainty are higher
at higher values of Chl-a variability (Figure 2). Higher levels
of noise occur in coastal areas due to local subgrid processes.
With higher Chl-a concentrations in coastal regimes, satellite
observation errors are often higher and the accuracy of the
retrieval algorithm is lower at higher levels of Chl-a, because
there are fewof in situobservations available for the algorithm
development.

4.1.3. Bias and RMSE. Of the data sets examined here, less
than one percent of the grid points have aChl-a concentration
greater than 1.0mg/m3 (Figure 2); thus, there is insufficient
data for training NN, precluding NN Chl-a estimates from
achieving adequate accuracy at higher concentrations of Chl-
a. Accordingly, we train our NNs employing the full data set;
however, results are presented for both the full OC interval
and, when it is appropriate, the case where data points with
Chl-a concentrations greater than 1.0mg/m3 (about 0.2% of
data) are removed. Table 2 rows 5 through 7 show the error
statistics and correlation coefficients for NN cases presented
in Table 2 rows 2 through 4, but with data records having
Chl-a concentrations greater than 1.0mg/m3 removed. For
Chl-a concentration less than or equal to 1.0mg/m3, the data
uncertainty is significantly smaller (order 0.11mg/m3 versus
0.18mg/m3) and the correlation between the NN simulated
OC and observed OC is significantly higher (0.72 versus
0.67).
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Figure 2: RMSE (black) and percentage (divided by 10) of data
(red) as functions of Chl-a concentration. Vertical line shows Chl-
a concentration = 1.0mg/m3. There is only about 0.2% of data with
concentrations greater than 1.0mg/m3.
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Figure 3: Binned scatter plot for NN-simulated versus observed
ocean color (chlorophyll-a) data for chlorophyll concentrations less
than or equal to 1.0mg/m3; bars show the standard deviation of data
in each bin.

The NN ensemble (Table 2 row 6) provides a significant
RMSE and correlation coefficient improvement over those of
the single NN (Table 2 row 5).

Figure 3 compares NN simulated versus observed Chl-a
concentrations for Chl-a concentrations less than or equal to
1.0mg/m3. Figure 4 shows binned dependence of NN error
(bias) on the value of Chl-a. In both figures, the standard
deviation bars for each bin reflect the level of noise in the data.
For Chl-a concentrations less than 0.5mg/m3, the NN values
have a small negative bias, while, for Chl-a concentrations
above 0.5mg/m3, the NN values have a small positive bias;
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Table 3: Ensemble performance for Chl-a concentration ≤

1.0mg/m3.

Ensemble member # RMSE (mg/m3) Correlation coefficient
1 0.11 0.722
2 0.093 0.766
3 0.097 0.757
4 0.097 0.757
5 0.094 0.758
6 0.094 0.758
Ensemble average 0.091 0.792
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Figure 4: Binned dependence of approximation error (bias) on
the value of chlorophyll-a concentration; bars show the standard
deviation in each bin.

however, the magnitudes of these biases are on order of the
level of the data uncertainty.

4.1.4. Performance ofNNEnsemble. Finally, an ensemble con-
sisting of six NNs ensemble members, with all six ensemble
members having the same architecture (23 inputs : 30 hidden
neurons : 1 output), was trained on the full NN training set
using different initial values for NN weights, 𝑎

𝑖𝑗
and 𝑏

𝑖𝑗
,

(4). Thus, different NN ensemble members correspond to
different local minima of the error function (5). Table 3
displays the ensemble member and the ensemble average
performances for Chl-a concentrations less than or equal
to 1.0mg/m3, showing that the ensemble mean has higher
correlation between the NN output and the VIIRS observa-
tions and lower RMSE than any of the individual ensemble
members. The ensemble mean clearly outperforms all of the
individual ensemble members, suggesting that random noise
may be contaminating the input and/or observation streams.

4.2. Evaluation of NN Prediction Capabilities
4.2.1. Prediction Accuracy. TrainedNNs and anNN ensemble
have been applied to the data sets for 2012–2014 to produce
Chl-a fields and to calculate statistics for validating the NN
fields against observedVIIRSChl-a observations. In Figure 5,
the time series (black) for global mean Chl-a RMSE from
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Figure 5: Three-year time series of global mean NN chlorophyll-
a RMSE: black curves represent results from the full data set; red
curves represent results when Chl-a values exceeding 1.0mg/m3
have been removed (about 0.2% of data); solid lines show ensemble
means anddashed lines depict values produced by an individualNN.
The validation period (2014) is indicated.
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Figure 6: Three-year time series of global mean NN chlorophyll-
a bias, referenced to VIIRS observations (VIIRS-NN values): black
curves represent results from the full data set; red curves represent
results when Chl-a values exceeding 1.0mg/m3 have been removed
(less than 1% of data removed); solid lines show the ensemble mean
bias anddashed lines depict themeanbias produced by an individual
NN. The validation period (2014) is indicated.

an individual NN (dashed line) and from the NN ensemble
(solid line) are presented. Also presented in Figure 5 are
the corresponding time series when using only records with
Chl-a concentrations less than or equal to 1.0mg/m3 (red).
Figure 5 supports our conclusion that the major contributor
of noise in the VIIRS Chl-a data is the small amount
of data with Chl-a concentrations greater than 1.0mg/m3.
These high concentration points, about 0.2% of the data set,
create a problem for retrieval algorithm development and
make training the NN for Chl-a concentrations greater than
1.0mg/m3 more difficult.

The mean biases (Figure 6) are very small, of order of the
estimate for the level of noise in the data (Table 2 row 7).
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Figure 7: Spatial plot of global bias (Chl-a > 1mg/m3 removed): (a) ensemble mean, (b) individual NN.

Figures 5 and 6 show a clearly pronounced annual cycle in the
bias andRMSEwhen all data are used; however, removing the
very small percentage of data, with Chl-a values exceeding
1.0mg/m3, almost completely eliminates the annual cycle.
Therefore, the small amount of data available with Chl-a
concentrations greater than 1.0mg/m3 is insufficient to train
NN for higher values of Chl-a. For lesser concentrations of
Chl-a, NN ensemble is accurate enough to remove the annual
cycle from the bias.

The spatial pattern of bias (Figure 7) has positive values
in the equatorial Pacific Ocean and negative values in the
equatorial Indian Ocean. As could be expected, large bias
values are found at high latitudes and in shallow waters, for
example, continental shelves and coastal regions.

Figure 7 indicates that, when compared to results from
an individual NN, the ensemble NN mean has lower bias in
many regions of the global oceans, especially in the south-
western IndianOcean, theNorth Pacific basin, and broadly in
the Atlantic Ocean. The results for the tropical Pacific Ocean
are mixed, with greater bias along the Equator and reduced
biases throughout the higher latitudes of the Tropics. Figure 8
shows the mean correlation (CC) is relatively stable and high
throughout the validation period (∼0.8), which is reassuring.
The CC is lower and more variable for the cases where all
data points are retained, suggesting that a few data points
with Chl-a greater than 1.0mg/m3 are responsible for notably
degrading NN performance. Figures 5–8 indicate that an NN
ensemble generally outperforms a single NN. These figures
also indicate good generalization skill from NNs trained on
two years of data.

4.2.2. Evaluation of NN Generalization Skill. To better evalu-
ate generalization skill and the smallest training set required
for accurate prediction of Chl-a fields, the second partition of
data (Section 3.2), with only one year (2012) of training data,
was used. Figure 9 shows the correlation coefficient between
the single NN-generated chlorophyll-a concentration fields
and global VIIRS chlorophyll-a retrieval fields for 2012–2014
for two different single NNs: the first (red curve) corresponds
to NN trained with two years of data (2012-2013) and second
(black curve) to NN trained with one year of data (2012). As
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Figure 8: Three-year time series for NN Chl-a correlation refer-
enced to VIIRS observations: black curves represent results from
the full data set; red curves represent results when Chl-a values
exceeding 1.0mg/m3 have been removed (less than 1% of data
removed); solid lines show the ensemble mean correlation and
dashed lines depict the mean correlation produced by an individual
NN. The validation period (2014) is indicated.

Figure 9 demonstrates the NN trained on one year of data
very quickly loses its generalization skill beyond the training
period (2012). The NN trained on two years of data preserves
its generalization skill, generating data during the validation
period (2014) of similar quality (in terms of correlation with
observed data) to that produced during the training period
(2012-2013). Similar depictions were obtained for bias and
RMSE. Thus, we conclude that using a training data set of
two years duration is sufficient to predict global OC fields for
at least one year following the training period. These results
demonstrate very good generalization skill by the NN, in
terms of both spatial and temporal generalization.

4.2.3. Preliminary Evaluation of NN Sensitivity. Using theNN
Jacobian ((8) and (9)) for evaluating the relative contributions
(importance) of the variables comprising the input vector,
𝑋, to the output vector, 𝑌, the NN Jacobian for each NN
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Figure 10: Linearized estimates (NN Jacobian Equation (9)) of
the input relative contributions to the NN output, chlorophyll-a
concentration. Table 1 input: (1) year, (2) day (sine component),
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longitude (cosine component), (6) latitude, (7) sea-surface height,
(8) sea-surface salinity, (9) sea-surface temperature, (10–16) Argo
salinity profile, and (17–23) Argo temperature profile.

ensemblemember and then themean Jacobian are calculated.
Figure 10 depicts the absolute value of the Jacobian vector
components, giving an estimate of the significance of each
NN input. Figure 10 demonstrates that the most important
input is the SST, followed by the Argo surface and subsurface
salinity fields. The Argo surface temperature observations
and satellite sea-surface salinity are less important than the
aforementioned ones, perhaps because the satellite SST and
Argo surface salinity observations already capture some of
the variability of the other measurements.

5. Discussion and Conclusions

This work introduces a new NN application, using NNs
to relate the biological parameter, Chl-a concentration, to
physical processes of the upper ocean. This new NN maps
satellite-derived surface parameters, for example, sea-surface
temperature (SST), sea-surface height (SSH), and sea-surface
salinity (SSS) fields, along with some in situ observations
(upper layers of Argo salinity and temperature profiles),
to Chl-a concentration. In other words, an NN empirical
biological model for Chl-a is introduced in this paper. Ocean
color (chlorophyll-a concentration) fields fromNOAA’s oper-
ational Visible Imaging Infrared Radiometer Suite (VIIRS)
as well as NOAA SSH and SST fields and NASA Aquarius
mission SSS fields were used. Observational data for 2012–
2014were spatially and temporally averaged andfitted to a 1∘×
1
∘ latitude/longitude grid forNN training, testing, and valida-
tion. Results were assessed using the mean error (bias), root-
mean-square error (RMSE), and the correlations between
observed and NN-generated chlorophyll-a concentrations.
An ensemble of NNs with different weights was developed
to reduce the impact of the noise in the data, as well as for
calculating the relative significance of contributing inputs.
Coarse spatial and temporal resolutions of the data limit the
features resolved by the NN-generated OC fields. Global and
mesoscale features are represented sufficiently well in the NN
OC fields; however, resolving finer-scale features requires the
NN to be trained with finer-resolution data.

This study demonstrates that employing anNN technique
can provide an accurate, computationally cheap method for
filling gaps in satellite observation fields and time series. It is
noteworthy that an individual NN (or a single NN ensemble)
is capable of generating OC fields for all global grid points,
although an NN ensemble produces better results. This study
demonstrated that training with at least two years of data
is needed for sufficient skill to ensure that the accuracy of
the NN prediction does not significantly degrade during
the one-year validation period. These results demonstrate
very good NN skill in terms of both spatial and temporal
generalization. The NN approach successfully eliminates the
systematic component of noise (bias). Employing an NN
ensemble reduces the random component of the noise.When
the small percentage of noisy data (less than one percent)
is removed, the ensemble mean outperforms each of the
ensemble members.

The mean Jacobian was used to evaluate the relative
significance of the NN inputs, revealing that the daily SST is
the most important input, closely followed by Argo monthly
subsurface salinity profiles. The Argo monthly temperature
subsurface signal moderately contributes to NN perfor-
mance. We are planning to improve NN skills by (1) optimiz-
ingNN inputs, (2) retrainingNNwith accumulated new data,
(3) introducing additional information (new input variables),
and (4) employing higher resolutions for both the inputs and
outputs. This NN system will be used to create consistent
chlorophyll-a concentration time series across various ocean
color satellite missions. The NN approach developed in this
study and applied to filling ocean color satellite measurement
gaps is a generic approach that can be applied to fill gaps in
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other satellite measurements. It is anticipated that this NN
system will also be applied to other ocean color parameters
important to numerical modeling, for example, the diffuse
attenuation coefficient for photosynthetically active radiation
(KdPAR).
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